
Network Processor based Router and the Cache Design:
Implementation and Evaluation

Yeim-Kuan Chang and Kai.-Ming. Hsu

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, Taiwan R.O.C.
ykchang@mail.ncku.edu.tw

Abstract—High performance routers are mostly implemented
with network processors because of their software
programmability, hardware computation power, and high
bandwidth interface design. In this paper, a 5-dimensional packet
classification algorithm based on the hierarchal binary prefix
search is first implemented in IXP1200 network processor. Our
classification implementation is faster and smaller than other
existing schemes and makes it possible to put entire rule table in
SRAM. Moreover, we proposed a cache mechanism for IXP1200
because we observed that the traffic patterns of backbone routers
have a strong temporal locality. Our proposed cache scheme not
only caches the results from packet classification but also caches
the results from IP lookups. Only one SRAM read is needed to
perform IP lookups and packet classification for a cache hit.
With this cache mechanism, the throughput of our system is very
close to the theoretical maximum bandwidth with a reasonable
hit ratio. Specifically, with a cache of 8192 rule entries, the
proposed cache mechanism has 50% improvement in throughput
over the system with no cache.

Keywords—IXP1200 network processor, binary prefix search, IP
lookups, packet classification, and cache..

1 INTRODUCTION
With the evolution of network technologies, the

requirements for the routers have become higher. Traditionally,
there are two major types of router implementations: software
and hardware. In software-based routers, the whole routing
process is programmed and run on general-purpose processors.
They can support new services by writing codes and updating
the software. In hardware-based routers, Application-Specific
Integrated Circuit (ASIC) chips are designed to support higher
processing power. However, designing and manufacturing
ASIC chips are expensive and time comsuming and lack the
flexibility of adding new services.

Nowadays, network processors are emerging as an
alternative solution to ASIC for providing scalable capability
for user-plane packet processing while retaining
programmability. Network processors typically consist of an
embedded control processor and several data processing
engines. The control processor is responsible for executing the
control plane functionality (e.g., routing table maintenance),
whereas data processing engines perform the data-plane
operations (e.g., IP Lookups). An example of such a network
processor is the Intel IXP1200 (Internet Exchange Processor),
which consists of one StrongArm core and six co-processors,
known as microengines. Each microengine can execute up to
four threads and its instruction set is specially designed for
packet processing.

In addition to the general data-plane operations, many
routers support packet classification. Today, there are many
layer-4 switching technologies such as Resource Reservation
Protocol, differentiated services, and quality of service. All
require the routers to classify the packets into different flows
and then perform appropriate actions. The packet
classification is supported according to pre-defined rules.

Typically, these rules based on header fields in layers 2, 3, and
4. Rule match may be the exact matching or prefix/range
matching on multiple fields. IP lookup is a special case of one
dimensional classification. A multi-dimensional classification
includes more than one field and the packet to be processed
should be matched with all of these fields.

In this paper, we use the RadiSys ENP-2505 evaluation
board [1] that consists of one IXP1200 network processor chip
and four Ethernet ports (4*100Mbps) as our development
environment. Our router design is based on RFC1812. In
addition, we used a multi-dimensional classification algorithm
based on binary prefix search and implemented a standard
five-dimensional classifier (including IP source address and
destination address fields, transport protocol fields, and source
and destination port fields) in IXP1200. The initial results
show that the performance of classification based on binary
prefix search is faster and more scalable than other schemes.
However, our system still needs more input processing power
for achieving the line speed. This means we need allocate
more microengines for input processing. For reducing the
resources requirement in IXP1200 and leaving ample
headroom for additional/faster ports, we propose a layer-4
cache design for IXP1200 because we observed that backbone
router have strong temporal locality. Our proposed cache
scheme caches the results not only from packet classification
but also from IP lookups. Only one SRAM-read is needed to
perform IP address Lookups and packet classification
procedure for a cache hit. With this cache mechanism, our
system performance can be improved significantly.

The rest of the paper is organized as follows. Our router
implementation augmented with a 5D classification algorithm
based on binary prefix searches is illustrated in section 4. The
performance results are also included. To further optimize the
performance of our router, we design a layer-4 cache for
IXP1200 and show the performance improvement in section 5.
The final conclusion of this paper is given in the last section.

2 IMPLEMENTATION OF IXP1200 ROUTER
The functional specification of our router

implementation is based on RFC 1812 [1]. The main
functionality of the router includes the following: packets with
invalid address, invalid IP version numbers, or TTL=0 and
broadcast packets are dropped. Packet header checksum is
calculated and the packet is dropped if the checksum is invalid.
After decrementing the valid TTL and recalculating checksum,
the packet is routed to the output port by performing the IP
lookups.

In addition, our router also implements packet
classification. For convenience, we name this router as IXP
Router. Figure 2.1 shows the software architecture of IXP
Router, which follows the IXP1200 ACE programming model.

Most ACEs components in the figure are supported by
IXA SDK except the Classifier ACE. All microblocks in

microengines are implemented as Micro C functions. We use
two microengines for processing packets in data-plane, one for
receiving packets and the other for transmitting packets. The
tasks of Receive/Transmit microengine threads are listed in
table 2.1.

Table 2: microengine thread assignments

microengine Thread Port/Task
Assignment Comments

Receive
microengine

Thread 0,
1, 2, and
3

4 Receive Thread Thread i to
receive port i for
i = 0 .. 3

Thread 0 Transmit
Scheduling

Transmit
microengine

Thread
1,2, and 3

Three dynamically
assigned Transmit
Threads

microengine 4
transmits on four
ports (0~3). (One
scheduler thread
and three
transmit threads)

The Classifier ACE builds the special data structure
based on rule table. Then the Classifier microblock classifies
packets into different flows according to the data structure
built by Classifier ACE. The major task of L3 Forwarder
MicroACE is to perform IP lookups and then forwards packets
to appropriate output ports. Based on IXP SDK, we adopt
multibit tries of 4-bit stride [16] as the IP lookups algorithm.
The L3 Forwarder microblock focuses on searching the next
hop route information. For certain types of packets (e.g.
packets with IP options in the header, fragmented packets,
ARP, etc.), this microblock sends them to the L3 Forward
ACE for performing appropriate action. These packets are
called “exception” packets.
Packet Flow in IXP Router:

Receiving and transferring packets are two basic tasks of
the router. When a packet arrives, it is divided into several 64-
byte chunks called mpackets and put into SDRAM. In order to
reassemble the packet, each mpacket can be identified as the
start of the packet (SOP), the end of packet (EOP), both, or
neither. The packet in SDRAM will be serviced by another
application (i.e. IP Lookups procedure) and be assigned
outgoing port number. Finally, the mapckets are put into the
outgoing MAC buffer sequentially. The outgoing MAC
devices transmit the complete packet when detecting it is EOP.
Packet Classification Algorithm

In this subsection, we shall illustrate the multi-
dimensional classification algorithm that is implemented in
IXP1200. First of all, we briefly describe the binary prefix
search [3] that is foundation of the classification algorithm.
Then we describe the details of the multi-dimensional packet
classification. Finally, the performance of classification
algorithm is evaluated on the platform of IXP1200.
Binary Prefix Search

To apply the binary search in a set of prefixes, two
problems must to be taken into account. The first one is that
the binary search works only for sorted lists. We must have a
mechanism that can compare and sort the prefixes. Therefore,
the comparison rule defined in [3] is given as follows.

Example 1: Given three 8-bit prefixes in ternary format,
A=0000-0***, B=0000-01**, and C=10**-****. Based on the
definition, we have A < B < C.

The second problem is that prefix enclosure defined in
[3] may result in multiple matches. From the same example
above, an 8-bit stream “0000-0101” will match not only prefix
A but also prefix B. Prefix B is enclosed by prefix A. The
characteristic of “prefix enclosure” may make the exact match
search algorithms such as binary search fail. To solve this
problem, the sorted array used by binary search must be

constructed by the enclosure split process, which includes the
following steps:

Step 1. Build the binary trie according to the prefixes set.
Step 2. Make the binary trie complete.
Step 3. Store all leaf nodes of binary trie in an array

sequentially by an inorder traversal.
Step 4. Perform merge for compressing the prefix array.

We give a simple example to illustrate above steps in
detail. Assuming there are four prefixes (A=1*, B=000*,
C=11*, and D=111*). First, we build the binary trie shown in
Fig. 2.2(a) and then convert this binary trie into a complete
binary trie shown in Fig. 2.2(b). In the complete binary trie, all
prefixes are stored in the leaf nodes. The prefix enclosure
problem is now removed because all the prefixes from the
complete binary trie are disjoint with each other. All the
prefixes in leaf nodes are stored in a prefix array by
performing an inorder traversal (Fig. 2.2(c)). Note that
enclosure split process may generate some auxiliary prefixes.
To decrease the number of auxiliary prefixes, “prefix merge”
scheme [3] was proposed for handling this problem. It tells us
that the consecutive prefixes can be merged, if they are
generated from the same prefix. Take Fig. 2.2(c) as our
example. Because the second and the third entry are both
generated from prefix A, they can be merged together. Fig.
2.2(d) shows the merged results. After “prefix merge” scheme,
we can apply the binary search to look for the longest prefix
search. Detailed search procedure for merged prefix array can
be found in [3]. Notice that, when the search reaches the final
two prefixes, both prefix need to be matched against the input
IP. The longest prefix of the two is matched first. If the
longest prefix matches the input IP, then it is done. Otherwise,
the other prefix is matched against the input IP. It is possible
that both prefixes do not match the input IP.
Multi-Dimensional Packet Classification

Our goal is to construct a standard five-dimensional
classifier including IP source address and destination address
fields, transport protocol fields, and source and destination
port fields. The IP source address and destination address
fields are in prefix format, which can apply binary prefix
search directly. The source port and destination port fields
may form in range format. The ranges are converted into
prefix format using the technique described in [18].

Now we illustrate how the binary prefix search can be
applied to the multi-dimensional packet classification.
Assuming a d-dimensional rule is in a form of ri=(F1i,…Fdi),
where Fik, called the Kth filter, is a variable length prefix bit
string. We use r = (F1, … Fd) when no confusion is incurred.
The proposed d-dimensional classification algorithm is
described as follows.

1. Build the binary based on F1 of the rule table.
2. Push all the sub-rules (F2, … Fd) of enclosing nodes to

their descendant nodes of the F1 binary trie. We call
this operation the rule pushing step.

3. Perform the enclosure split process based on F1 to
construct the sequential list of sorted nodes. Now each
node contains multiple entries of sub-rules (F2, … Fd).

4. Continue steps 1, 2, and 3 for each dimension except
that the rule push step (step 2) is not required for last
dimension.

Consider the 2D rule table consisting of A=(*,01*),
B=(000*,000*), C=(001*,*), and D=(0*,111*). We first build
the binary trie according to the field 1 of classifier shown in
Fig. 2.3(a). Secondly, the rules of enclosing prefixes are
duplicated and pushed to their descendant prefixes as shown
in Fig. 2.3(b). And then the enclosure split process is
performed on the field 1 binary trie with rule duplications.

The inequality 0<*<1 is used to compare two prefixes in
the ternary representation of prefixes.

This example does not introduce any auxiliary nodes. Now the
sequential list of the rules based on filed 1 is completed.

Each element of the sequential list constructed so far
contains the field 2 rule information. We need to construct the
binary tries for all the nodes based on filed 2. Fig. 2.3(c)
shows the binary tries constructed. Since this the last
dimension, no rule pushing is required. We then perform
enclosure split process to add the necessary auxiliary prefixes
of field 2. Fig. 2.3(d) shows the 2-D view of the structure,
which is implemented, in a 2-level hierarchy shown in Fig.
2.3(e).

Assume the first two fields of the incoming packet are
(0000, 0000) and the rule set is the one described above. The
first-level list in Fig. 2.3(e) is first checked with field 1 that is
0000. Binary search finds that the longest prefix match is B.
Then following the pointer from B, binary search is performed
using field 2 that is 0000. Field 2 of B is matched. Therefore,
the matched rule is B.

So far, we have described how to apply binary prefix
search to multidimensional classifier and give an example of
2D classifier. In our works, we implement a 5-dimensional
classifier for IXP1200 by constructing five sorted prefix array.
The hierarchical sorted prefixes are in the order of protocol,
destination address, source address, destination port, and
source port. In the first 4 levels of the hierarchy lists, we only
need longest prefix match, without considering the priorities
of the rules. Only at the least level, we need to determine
which rule’s priority is the highest.
Performance Evaluation

In order to evaluate the performance and scalability of
our scheme, we use synthetic rule tables of various sizes.
These synthetic tables are generated by using ClassBench,
which is a publicly available tool for benchmarking packet
classification algorithms [20]. Table 2.2 shows the memory
requirements of the proposed 5-dimensional scheme. In
addition, we also implement 2-D version of Grid of Trie [18]
to compare with 5-D version of the proposed scheme. All
experiments are evaluated by using IXP NetBench, a traffic
generator/analyzer developed by our lab.
Table 2.2 Memory required by proposed scheme with
synthetic rule tables.

Memory Requirement Table
Name

size
Proposed 5D classifier GOT 2D classifier

50_rule 50 2.96KB 20.99KB
100_rule 100 4.79KB 31.57KB
500_rule 500 22.22KB 92.46KB
1000_rule 1000 43.29KB 189.88KB
Grid-of-Tries

Memory requirement is the critical issue for
implementing a classification algorithm on the platform of
IXP1200 because of the limited SRAM size (only 4MB are
available in our evaluation board). We surveyed several
packet classification algorithms in [4]. By considering the
requirement in both memory and performance, we think the
Grid-of-Tries may be suitable in IXP1200 because it avoids
backtracking problem of the hierarchical tries [18] and reduces
the storage requirement of the set purring tries [18]. Therefore,
we implemented 2-D version of Grid-of-Tries and evaluated
its performance. Note that we set a simple 2D version of rule
table for testing the Grid-of-Tries in this part and use IXP
NetBench for generating traffic streams with different size of
packets. Fig. 2.4 shows the experimental results. It can be seen
that IXP Router cannot perform very well with small packet
sizes. We doubt that the bottlenecks of our system occur in
receiving process. However, in hardware mode, we can only
get the router’s throughputs by IXP NetBench. But in
simulation mode, the Developer Workbench can provide

detailed processing information such as memory and thread
histories, memory reference latencies and cycle-by-cycle
interactions among the threads and memory units. This
information is very useful for analyzing our system. Therefore,
we decide to execute IXP Router in simulation mode and
divide the tasks of Receive microengine into five categories
for determining which one needs maximum processing time
and is the bottleneck. These five categories are Receive Packet,
Classifier (2D Grid-of-Tries), IP Lookups (multibit tries of 4-
bit stride), Miscellaneous, and Queuing .

The queuing category has two types of actions: queuing
packet for slow-path processing (StrongARM) or queuing
packet for fast-path processing (microengines). The
miscellaneous category consists of Layer 2 Header Validation,
Layer 3 Header Validation and TTL validation. They are
described as follows.
1. Layer 2 Header Validation: Ensure the destination MAC

address of the datagram matches the destination MAC
address of the interface where the datagram is received.
(RFC1812, Section 5.3.4). If a mismatch occurs, check the
Ethernet type, if it equals 806 (ARP request) and L2
destination MAC address is broadcast, this packet is
queued for slow-patch exception handling (StrongARM
exception handling). Otherwise, drop this packet.

2. Layer 3 Header Validation: Checking the packet’s length
is reasonable and that the IP version, header length, packet
length, and checksum fields are valid. Checking IP
source/destination address is legal unicast address.

3. TTL Validation: If the TTL value is smaller than one, this
packet is queued for slow-patch exception handling.
Otherwise, it decrements the TTL and recalculates the
checksum.

Now, we can gather the required processing time of each
category by analyzing the thread execution history using
Developer Workbench. The simulated results are shown in Fig.
2.5. Only the task of receiving packet will be influenced
significantly with bigger packet size. Not surprisingly, the
Classifier is the heavy task of Receive microengine. Each
search almost requires 3500 clock cycles that take up 70%
processing time for a 64-byte packet. Therefore, the packet
classification algorithm, Grid-of-Tires, can not perform well
in IXP1200. Although Grid-of-Tries bounds memory usage to
O(NW) but the search time is O(dW), where N is the number
of filters and W is the maximum number of bits specified in
the source or destination fields. For the case of searching on
IPv4 source and destination address prefixes, it may need 65
memory accesses in the worst case. In this environment, we
set prefix length “30” in the rule table, which is very closely to
the worst case. In [20], David E. Taylor and Jonathan S.
Turner performed a battery of analyses on 12 real rule tables
provided by Internet Service Providers (ISPs). Unfortunately,
we find that the proportion of maximum address prefix length
(32) takes up higher percentage in real rule table. It should be
concluded, from what has been said above, that trie based
packet classification algorithms are not suitable in IXP1200.
Therefore, we didn’t spend more time on implementing the
EGT (5D-D version of Grid-of-Tries), which may requires 84
to 137 memory accesses per lookup reported as in [2].
Scalability Test

To conduct the scalability test, we set microengine 0 as
Receive microengine and microengine 4 as Transmit
microengine for processing packets. One input traffic stream
is generated by IXP NetBench with different size of packets
for analyzing the throughput based on different rule tables.
Note that the packet pattern of traffic stream must be
predefined based on the synthetic rule tables and the
forwarding table. This test is to investigate the scalability of
our proposed scheme. Fig. 2.6 shows the experimental results.
We can find that the throughputs of our system are very

closely with different size of rule tables. Observably, our
proposed scheme has high scalability. One reason is that our
proposed scheme is logarithmic search method. When
increasing the number of rules in rule table, the processing
time won't be linearly increased but logarithmically increased.
The other reason is that most rules are independent with each
other; the enclosing rules are not very popular in the common
case. Specifically, our proposed scheme for 500 rules achieves
throughput of 38.9 Mbps at minimal size of packets, which is
much better than the result reported in [18].
Multi-Threads Test

As described in section 3, the design of our system takes
advantage of multi-treads architecture of IXP1200. Each
thread of receive microengine services specific port of our
system. Above test involves only one traffic stream
transmitted by one port of IXP NetBench. In this kind of
situation, only one thread of Receive microengine will be
waked up to service this traffic stream. To wake up the other
threads of Receive microengine and evaluate the maximum
throughput of our system, we configure several traffic streams
(1~4) by IXP NetBench and transmit them to different ports of
router. Fig. 2.7 shows the experimental results. Naturally, the
throughout of two threads is approximately two times of the
one of a single thread. However, due to the lack of the
computing power, the throughout of three or four threads in a
microengine is not three or four times of the performance by
only one thread.
Multi-microengine Test

For improving the performance of packets of smaller
sizes, increasing the processing power is the straightforward
method. Above test only uses one Receive microengine for
dealing with the input packets. In this part, we configure two
microengines (micorengine 0 and microengine 1) as Receive
microengines. In this way, one port can be serviced by two
receive treads concurrently. Note that we must increase
several mutex operations in our code for coordinating threads
with competitive problem. Figure 2.8 shows the experimental
results. We can find that the throughout of two microengines
approximately achieves to maximum transmit speed of IXP
NetBench. Increasing the computing power can improve the
performance of our system. However, it also increases the
used resources of IXP1200. For reducing the used resources of
IXP1200 and leaving ample headroom for additional/faster
ports, we propose a layer-4 cache mechanism for IXP1200 in
next section.
3 Cache Design for IXP1200

Cache has been proved to be a very effective technique
to improve memory access speed. Nowadays, on-chip cache
memory is usually designed for general processor (also called
CPU cache). However, in IXP1200, the microengines do not
have cache memory but they share three different memory
interfaces: SRAM, SDRAM and Scratchpad. Our idea is to
design a cache mechanism in IXP1200 for improving packet
classification and IP lookups. To select the appropriate
memory interface for caching the layer-3 and layer-4
information, we measured the latencies for reading/writing
different size of data based on different types of memories.
The SRAM read/write speed is faster than SDRAM and very
close to scratchboard memory and the size in IXP1200 is big
enough to hold layer routing tables and classification rule
tables. Therefore , we selected SRAM as cache memory.

Fig. 3.1 illustrates the functional blocks of our caching
approach for IXP1200, which is similar to CPU cache. Each
cache block consists of one or more cache entries, which are
the basic unit for storing cache information including Flow-ID
and searching results (from classification and IP lookups). Our
cache approach consists of three major steps that are described
as follow.

1. When a packet arrives, the packet header information
(Flow-ID) is used to generate cache index via hash which
will be decreased later. With this cache index, we can get
the number of cache block and the meta information of
cache block.

2. As long as the incoming Flow-ID can match one cache
entry in the cache block (cache hit), no further searches
are needed; that is, this cache entry gives us the layer-3
and layer-4 forwarding information: Classifier Action ID
(result from packet classification procedure) and Next
Hop Information Pointer result from IP lookups
procedure).

If the incoming Flow-ID mismatches all cache entries in
this cache block (cache miss), this packet will be forwarded
by running packet classification and IP lookups procedure.
Besides, the mismatched cache block also needs to be updated.
Hit Ratio Analysis

The simplest way to evaluate cache performance is to
analyze the cache hit ratio. Since backbone routers are
considered as the most critical points, we obtained a traffic
trace from OC-48 backbone routers provided by the NLANR
PMA project [13]. This traffic trace has 42,870,847 entries,
including layer-3 and layer-4 information (source IP/port,
destination IP/port and protocol), which are useful for our
investigation.

Several components may affect cache performance such
as cache size, hash functions, cache associativity, and
replacement policies. We will consider whether these
components have major impact on cache hit ratios.
1. Cache Size: The cache size is equal to the product of the

number of cache entries and the cache entry size. The
cache entry is the basic unit for storing cache information
which is composed of two fields. Field Flow-ID is used to
store flow information such as source IP address (src_ip),
destination IP address (dst_ip), source port (src_port), etc.
The other field, Results, used to record the results from
packet classification and IP lookups. These two fields
influence the size of cache entry. If each flow is identified
by 2-dimensional fields (src_ip,dst_ip), it only needs 8
bytes for storing Flow-ID. However, in our system, each
flow is identified by 5-dimensional fields; each cache entry
needs 16 bytes for storing Flow-ID and information of
results. In general, the more cache entries is in the system,
the higher is the cache-hit ratio. However, we can not use
the entire SRAM for caching because SRAM need also be
used for storing other data structures such as rule table for
packet classification and IP lookups. We propose to
reserve 128KB SRAM as our cache memory, which is
enough for storing 8192 cache entries.

2. Hash function: Remember that packet header information
is used to generate cache index via hash. Without an
effective hash function, a large number of collisions may
occur and degrade the cache performance. Traditional hash
functions, such as SHA-1, MD5, are popular because they
produce well-balanced output in which a single bit change
in the input can change every bit of the output with equal
probability. However, in IXP1200, SHA-1 or MD5 hash
functions are not supported in hardware. Therefore,
designing a hash function with less computation to achieve
approximate performance of MD5 or SHA-1 will be
helpful for our cache scheme. We propose two simple hash
algorithms, XOR based hash and ADD based hash, which
are shown in Fig. 3.2.

3. Cache associativity: Increasing associativity is a widely
used technique in CPU cache to reduce the impact of
conflict misses and increase hit rate. However, our cache
approach is to put cache information in SRAM, getting or
updating cache information must issue memory references
to SRAM. In IXP1200, it is necessary to use SRAM

transfer registers for communicating between
microengines and SRAM unit. Nevertheless, in terms of
microengine, each thread only can access 8 SRAM
read/write transfer registers, which result in the maximum
transfer size to be 32-byte (8*4-byte) in one memory
access. For this reason, we consider that direct mapped or
2-way set associative cache is suitable for our cache
approach because only one SRAM read or write is needed
for getting information from cache or updating information
to cache.

4. Cache Replacement Algorithm: From Fig. 3.1, the cache
index is the pointer used to get the number of cache block.
If we adopt n-way set associative cache scheme (Typically,
n = 2, 4, 8 etc.), each cache block has n cache entries.
Once a cache miss occurs, it is necessary to choose one
cache entry and replace it with the new one. We apply
three conventional replacement algorithms (first in first out
(FIFO), Least-Recently-Used (LRU), and random) to 2-
way set associative cache scheme for evaluating the impact
on cache hit ratio in our system.

Trace Simulation
So far, we have described our cache structure and

several factors that may influence cache hit ratio. In this
subsection, we use the collected traffic trace as input to
analyze cache hit ratio based on these factors. Due to the space
limit, only results for XOR are illustrated in table 3.1.

First, consider the performance of hash functions. The
ADD based hash is better than XOR based hash when cache
entries are larger than 512. On the contrary, the XOR based
hash is better than ADD based hash function with small cache
entries. In summary, the performance of simple hash functions
is almost equal to that of MD5 hash across all conditions.

Secondly, we focus on the impacts of cache-hit ratio
with different cache associativity. Not surprisingly, the 2-way
set associative cache is better than direct mapped cache by
2.5% to 5.6%. But the differences are not so significant; we
cannot ensure the performance of 2-way set associative cache
is better than direct map. This is because 2-way set associative
cache has two cache entries, which needs more clock cycles
for getting/updating information from/to cache memory. In
addition, it also needs double time for comparing the
information of cache entry.

Finally, we consider different replacement polices, the
FIFO is better than random in most of situations. As to LRU,
it is better than FIFO and random by 0.4% to 3.7%. However,
implementation of LRU algorithm is more complex than FIFO,
this is because LRU needs to record the cache entry which is
least used and updates this information to cache. In other word,
LRU needs to update the information (issue a SRAM write) to
cache whether the cache hit or not, but FIFO only needs to
update that for a cache miss.
Table 3.1: cache-hit ratio based on XOR hash function with

different cache-size and replacement algorithms.
Cache
Entry/Size Direct map 2-way FIFO

2-way
Random 2-way LRU

64/1KB 0.431586 0.464565 0.454718 0.481495
128/2KB 0.503763 0.536422 0.526164 0.55388

256/4KB 0.56481 0.593504 0.585397 0.615631

512/8KB 0.622608 0.642971 0.63848 0.672233
1024/16KB 0.682031 0.695614 0.694472 0.730671
2048/32KB 0.740807 0.751845 0.751835 0.786135
4096/64KB 0.796555 0.806116 0.805535 0.833534
8192/128KB 0.840697 0.847871 0.846772 0.866453
Experiment Results on IXP1200 Enp-2505 board

To evaluate the effectiveness of our proposed cache
design, we implemented three cache schemes including direct
mapped cache, two-way FIFO cache and two-way LRU cache.

However, we face another problem: all packets generated by
IXP NetBench will be cached, and the cache hit ratio will be
almost 100%. For solving this problem and creating different
testing cases, we implement a software counter that will
invalidate the cache block periodically. With this counter, we
can create different cache hit ratio in our system.

The experimental environment is the same as Figure 2.4;
we adopt our proposed classification algorithm, using the
rule_1000 as our classifier. IXP NetBench generates the input
traffic with minimum size of packets in this experiment. We
find that the performance of these three cache schemes
described above is almost the same. Therefore, we only show
the results of two-way FIFO cache scheme in Fig. 3.3.
Observably, with the two-way FIFO cache mechanism, our
system performance can be improved significantly. In the case
of 87.5% hat ratio, our system can achieve the IXP NetBench
transmit speed (71.34Mbps), which has 50% improvement in
throughput over the system with no cache (35.53Mbps).
4 CONCLUSIONS

In this paper, we first explained the needs of network
processors for today’s complex applications, and introduced
the hardware architecture and development environment in
IXP1200. Then we explain the software architecture and
detailed pack flow in our system. At first, we implement the
Grid-of-Tries as our classification algorithm. However, its
heavy memory accesses almost take the 70% processing time
when dealing with minimum size of packet. To increase the
performance, we designed and implemented a new 5-
dimensional packet classifier. Our classification algorithm
needs less memory space than Grid-of-Tries and makes it
possible to put in fast SRAM. In addition, the logarithmic
search method of our proposed algorithm is very suitable and
scalable for packet classification because the typical rule
tables are not very big in real world. In benchmarking our
proposed algorithm, our scheme for 1000 rules achieves
throughput of 35.5 Mbps at minimal size of packets, which is
much better than the results reported in [12].

Furthermore, we proposed a cache mechanism for
IXP1200 because we observed that backbone routers have
strong temporal locality. Our proposed cache scheme not only
caches the result from packet classification but also caches the
result from IP lookup. Only one SRAM-read is needed to
perform IP address Lookups and packet classification
procedure when cache hits. With this cache mechanism, the
throughput of our system is very close to the theoretical
maximum bandwidth with reasonable hit ratio.
REFERENCES
[1] F. Baker, “Requirements for IP Version 4 Routers,”

Request for Comments - 1812, Network Working Group,
June 1995.

[2] F. Baboescu, S. Singh, and G. Varghese, “Packet
Classification for Core Routers: Is there an alternativeto
CAMs?,” In IEEE Infocom, 2003.

[3] Yeim-Kuan Chang, “Fast Binary and Multiway Prefix
Searches for Software-Based Routers”, submitted for
publication.

[4] P. Gupta and N. McKeown, “Algorithms for Packet
Classification,” IEEE/ACM Trans. Networking, vol.15,
pp.24-32, 2001.

[5] Intel Corporation, “Product Brief: IXP12EB Intel®
IXP1200 Network Processor Ethernet Evaluation Kit,”
2000.

[6] Intel Corporation, “Development Tools User’s Guide”,
March 2002.

[7] IEEE. Standard 802.3, October 2000.
[8] Intel Corporation, “IXA SDK 2.01 Developer’s Guide:

Intel IXA SDK ACE Programming Framework,”
December 2001.

[9] Intel Corporation, “SDK 2.01 Reference: IXA SDK 2.01
Developer’s Guide: Intel IXA SDK ACE Programming
Framework,” December 2001.

[10]Intel Corporation, “Reference Manual: Intel®
microengine C Compiler Language Support,” August 2001.

[11]Intel Corporation, “Reference Guide: Intel® microengine
C Networking Library for the IXP1200 Network
Processor,” December 2001.

[12]Ying-Dar Lin, Yi-Neng Lin, Shun-Chin Yang and Yu-
Sheng Lin, “DiffServ Edge Routers over Network
Processor: Implementation and Evaluation,” IEEE
Network, August 2003.

[13]F. Baker, “Requirements for IP Version 4 Routers,”
Request for Comments - 1812, Network Working Group,
June 1995.

[14]Hewlett Packard, “Netperf: A Network Performance
Benchmark,” http://
www.netperf.org/netperf/NetperfPage.html, 1995.

[15]RadiSys Corporation, “ENP2505 Hardware Reference”,
2002.

[16]M. A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous,
“Survey and taxonomy of IP address lookup algorithms,”
IEEE/ACM Trans. Networking, vol. 15, pp. 8–23, 2001.

[17]Quinn O. Sell, Armin. R. Mikler and John L. Gustafson,
“NetPIPE-A Network Protocol Independent Performance
Evaluator,” http://www.scl.ameslab.gov/netpipe/, 2004.

[18]V. Srinivasan, G. Varghese, S. Suri, and M. Waldvagel,
“Fast and scalable layer four switching,” In Proc. ACM
SIGCOMM’98, pp. 191–202, 1998.

[19]A. Tirumala, M. Gates, F. Qin, J. Dugan and J. Ferguson.
“Iperf - The TCP/UDP band-width measurement tool,”
http://dast.nlanr.net/Projects/Iperf.

[20]D. E. Taylor and J. S. Turner, “ClassBench: A Packet
Classification Benchmark,” Tech. Rep. WUCSE-2004-28,
Department of Computer Science &
Engineering,Washington University in Saint Louis, May
2004.

(a) F1 binary trie.

A2
D2
B2

A2
D2
C2

A2
D2

A2 field 1

field 1

field 1

B2
A2
D2

C2
A2
C2
D2

A2
D2

A2

(c) F2 binary tries.

(d) 2-D view of the sorted rules

C A C D A D

(e) Hierarchical structure of the sorted rules

Figure 2.3: example of the multi-dimensional
classification.

A
,D

A,D
,B

A,D
,C

(b) Rule pushing.

Receive microengine Transmit microengine

L3 Fwd
 ACE

StrongARM
Core

classifier
 ACE

Input IF
 ACE

Output IF
 ACE

Input IF
Microblo
ck

Classifier
Microblock Source

Microblock
Output IF
Microblock L3 Fwd

Microblock
Sink
Microblock

Resource Manager

Stack
 ACE

Fig.2.1 Software Architecture of IXP Router

 (a): Binary trie

Complete

B

A

 C

D

C

B A A C D

0
0
0
*

0
0
1
*

0
1
*
*

1
1
0
*

1
1
1
*

A

B

C

D B A

 C

D

A

A
A

A

B C D

 (b): complete binary trie

 (c): prefix array

B A C D

0
0
0
*

0
*

1
1
0
*

1
1
1
*

 (d): merged prefix array

Fig.2.2 example of binary prefix search.

0
10
20
30
40
50
60
70
80
90

100

6
4

1
2

8

1
9

2

2
5

6

3
2

0

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
1

5
2

1
2

8
0

1
4

0
8

1
5

1
4

Packet Size

M
b

p
s

Maxinum Theoretical Bandwidth

IXP NetBench transfmit speed

IXP Router Performance (Grid-of-Tries)

Figure 2.4: IXP Router Performance based on Grid-of-Tries

30
35
40
45
50
55
60
65
70
75
80
85
90
95

64 128 192 256 320

Packet Size

M
b

p
s

50_rule

100_rule

500_rule

1000_rule

IXP_NetBench
Transmit Speed

Incoming Flow-ID

<d_ip,s_ip,d_port,s_port,prot>

Cache Block 1

Cache Block 2

Cache Block N

Getting Classifier Action ID and Next

Hop Pointer

Update

Packet

Classification

Per Thread in Receive microengine

SRAM IP

Lookups

HIT

0

500

1000

1500

2000

2500

3000

3500

4000

Receive

Packet

Classifier IP LookupMiscellaneous Queuing

packet size 64

packet size 128

packet size 256

packet size 512

Figure 2.5: processing requirement (clock cycles) of these five
categories with different size of packets; Simulation
Configuration: Core Speed: 232 MHz; IX Bus Speed: 66
MHz

Figure 2.6: Throughput with varying number of rules

0
10
20
30
40
50
60
70
80
90

100

64 128 192 256 320

Packet Size

M
bp

s

One Receive ME

Two Receive ME

IXP_NetBench Transmit
Speed

0
20

40
60
80

100

120
140

50_rule 100_rule 500_rule 1000_rulerule table

M
bp

s

1 Input Traffic

2 Input Traffic

3 Input Traffic

4 Input Traffic

Figure 2.7: Total throughput (packet size=64byte, worst case)

Figure 3.1: Functional block of our Caching Approach for
IXP1200.

Figure 3.2: ADD or XOR based hash functionThe low order n
bits of hash output are used to index the 2

n
 cache blocks.

0

20

40

60

80

Throughput with different hit ratio

M
b

p
s

IXP NetBench
Transmit Speed
Hit Ratio 0.875

Hit Ratio 0.75

Hit Ratio 0.5

Hit Ratio 0.25

No Cache

Figure 3.3: Throughput with different hit ratio where
microengine 0 as Receive microengine; microengine 4 as
Transmit microengine.

Src IP

Dst IP

Src port | Dst Port

ADD or XOR

ADD or XOR

32-bit

output

Cache index
n bits

