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Abstract—High performance routers are mostly implemented
with  network processors because of their software
programmability, hardware computation power, and high
bandwidth interface design. In this paper, a 5-dimasional packet
classification algorithm based on the hierarchal mary prefix
search is first implemented in IXP1200 network proessor. Our
classification implementation is faster and smallerthan other
existing schemes and makes it possible to put ergirule table in
SRAM. Moreover, we proposed a cache mechanism foXP1200
because we observed that the traffic patterns of lshkbone routers
have a strong temporal locality. Our proposed cachecheme not
only caches the results from packet classificatiohut also caches
the results from IP lookups. Only one SRAM read isneeded to
perform IP lookups and packet classification for acache hit.
With this cache mechanism, the throughput of our sstem is very
close to the theoretical maximum bandwidth with a easonable
hit ratio. Specifically, with a cache of 8192 ruleentries, the
proposed cache mechanism has 50% improvement in thughput
over the system with no cache.

Keywords—IXP1200 network processor, binary prefix search, P
lookups, packet classification, and cache..

1 INTRODUCTION

Typically, these rules based on header fieldsyers 2, 3, and
4. Rule match may be the exact matching or prefirde
matching on multiple fields. IP lookup is a spedabe of one
dimensional classification. A multi-dimensional 3#ication
includes more than one field and the packet to foegssed
should be matched with all of these fields.

In this paper, we use the RadiSys ENP-2505 evaluati
board [1] that consists of one IXP1200 network pesor chip
and four Ethernet ports (4*100Mbps) as our develepm
environment. Our router design is based on RFC1842.
addition, we used a multi-dimensional classificatadgorithm
based on binary prefix search and implemented adatd
five-dimensional classifier (including IP sourcedesss and
destination address fields, transport protocotifiehnd source
and destination port fields) in IXP1200. The iditi@sults
show that the performance of classification basedinary
prefix search is faster and more scalable thanr ctbleemes.
However, our system still needs more input procgspower
for achieving the line speed. This means we neéztatk
more microengines for input processing. For reduycihe
resources requirement in IXP1200 and leaving ample
headroom for additional/faster ports, we propostayeer-4

With the evolution of network technologies, the cache design for IXP1200 because we observed #ukbbne

requirements for the routers have become highadiiionally,
there are two major types of router implementaticodtware
and hardware. In software-based routers, the whmléing
process is programmed and run on general-purp@aegsors.
They can support new services by writing codes wptthting
the software. In hardware-based routers, Applica8pecific
Integrated Circuit (ASIC) chips are designed topsuphigher
processing power. However, designing and manufactur
ASIC chips are expensive and time comsuming ankl tlae
flexibility of adding new services.

router have strong temporal locality. Our proposesthe
scheme caches the results not only from packesititzgion
but also from IP lookups. Only one SRAM-read isdezkto
perform IP address Lookups and packet classifinatio
procedure for a cache hit. With this cache mecmanisur
system performance can be improved significantly.

The rest of the paper is organized as follows. @uter
implementation augmented with a 5D classificatitqoathm
based on binary prefix searches is illustratecetisn 4. The
performance results are also included. To furthptingze the

Nowadays, network processors are emerging as gperformance of our router, we design a layer-4 eafdr

alternative solution to ASIC for providing scalaldapability
for user-plane packet processing while
programmability. Network processors typically cansif an

embedded control processor and several data piongess

engines. The control processor is responsibleXeciting the
control plane functionality (e.g., routing table intanance),
whereas data processing engines perform the date-pl
operations (e.g., IP Lookups). An example of suctetavork
processor is the Intel IXP1200 (Internet Exchange@ssor),
which consists of one StrongArm core and Six CaGpssors,
known as microengines. Each microengine can exaqut®
four threads and its instruction set is speciakgigned for
packet processing.

In addition to the general data-plane operationanym
routers support packet classification. Today, theme many
layer-4 switching technologies such as ResourcefRagon
Protocol, differentiated services, and quality efvice. All
require the routers to classify the packets inféedint flows
and then perform appropriate actions. The
classification is supported according to pre-defineiles.

IXP1200 and show the performance improvement itiees.

retainingThe final conclusion of this paper is given in tast section.

2 IMPLEMENTATION OF IXP1200ROUTER

The functional specification of our router
implementation is based on RFC 1812 [1]. The main
functionality of the router includes the followingackets with
invalid address, invalid IP version numbers, or FOLand
broadcast packets are dropped. Packet header cinecls
calculated and the packet is dropped if the cheunkisuinvalid.
After decrementing the valid TTL and recalculatatgecksum,
the packet is routed to the output port by perfogrihe IP
lookups.

In addition, our router also implements packet
classification. For convenience, we name this moate IXP
Router. Figure 2.1 shows the software architectufrdXP
Router, which follows the IXP1200 ACE programmingael.

Most ACEs components in the figure are supported by

packefxa SDK except the Classifier ACE. All microblocks



microengines are implemented as Micro C functis. use
two microengines for processing packets in datagglane for
receiving packets and the other for transmittingkpss. The
tasks of Receive/Transmit microengine threads isted in
table 2.1.

Table 2: microengine thread assignments

Port/Task

microengine | Thread Assignment Comments
; Thread Q4 Receive ThreadThread i to
Receive . .
microengine % 2, an ire:c((%n./.egport i for
Thread 0|Transmit microengine 4
Scheduling transmits on fou
Transmit Thread [Threedynamicallyports (0~3). (Ong
microengine |1,2, and Jassigned Transmischeduler thread
Threads and three
transmit threads

The Classifier ACE builds the special data struetur
based on rule table. Then the Classifier microbloessifies
packets into different flows according to the dateucture
built by Classifier ACE. The major task of L3 Fomdar
MicroACE is to perform IP lookups and then forwapdskets
to appropriate output ports. Based on IXP SDK, wepa
multibit tries of 4-bit stride [16] as the IP logksi algorithm.
The L3 Forwarder microblock focuses on searchiregnbxt
hop route information. For certain types of packétsg.
packets with IP options in the header, fragmentadkets,
ARP, etc.), this microblock sends them to the L3weod
ACE for performing appropriate action. These paskate
called “exception” packets.

Packet Flow in IXP Router:

Receiving and transferring packets are two baskstaf
the router. When a packet arrives, it is dividet several 64-
byte chunks called mpackets and put into SDRAMoriter to
reassemble the packet, each mpacket can be iéené§ the
start of the packet (SOP), the end of packet (E®B,, or
neither. The packet in SDRAM will be serviced byoter
application (i.e. IP Lookups procedure) and be gmesd
outgoing port number. Finally, the mapckets are iptd the
outgoing MAC buffer sequentially. The outgoing MAC
devices transmit the complete packet when detedtisgeOP.

Packet Classification Algorithm

In this subsection, we shall illustrate the multi-
dimensional classification algorithm that is impksmed in
IXP1200. First of all, we briefly describe th@nary prefix
search[3] that is foundation of the classification algbm.
Then we describe the details of the multi-dimensigracket
classification. Finally, the performance of -classifion
algorithm is evaluated on the platform of IXP1200.
Binary Prefix Search

To apply the binary search in a set of prefixesp tw
problems must to be taken into account. The firg  that
the binary search works only for sorted lists. Wastrhave a
mechanism that can compare and sort the prefixestefore,
the comparison rule defined in [3] is given asdolé.

The inequality 0<*<1 is used to compare two prefie
the ternary representation of prefixes.

Example 1: Given three 8-bit prefixes in ternargniat,
A=0000-0***, B=0000-01**, and C=10**-**** Based orthe
definition, we have A<B < C.

The second problem is thptefix enclosuredefined in
[3] may result in multiple matches. From the samaneple
above, an 8-bit stream “0000-0101" will match notyoprefix
A but also prefix B. Prefix B is enclosed by prefix The
characteristic of “prefix enclosure” may make tlxaa match
search algorithms such as binary search fail. Tlgesthis
problem, the sorted array used by binary searcht rhas

constructed by thenclosure split processvhich includes the
following steps:

Step 1Build the binary trie according to the prefixes. set

Step 2Make the binary trie complete.

Step 3Store all leaf nodes of binary trie in an array
sequentially by an inorder traversal.

Step 4Perform merge for compressing the prefix array.

We give a simple example to illustrate above sieps
detail. Assuming there are four prefixes (A=1* B#©0,
C=11%* and D=111%). First, we build the binary tsaown in
Fig. 2.2(a) and then convert this binary trie iatacomplete
binary trie shown in Fig. 2.2(b). In the completeaby trie, all
prefixes are stored in the leaf nodes. The prefiglasure
problem is now removed because all the prefixesnftbe
complete binary trie are disjoint with each othétl the
prefixes in leaf nodes are stored in a prefix artay
performing an inorder traversal (Fig. 2.2(c)). Notieat
enclosure split process may generate some auxijbigrfjxes.
To decrease the number of auxiliary prefixes, ‘prefierge”
scheme [3] was proposed for handling this problirells us
that the consecutive prefixes can be merged, if thee
generated from the same prefix. Take Fig. 2.2(c)oas
example. Because the second and the third entrybette
generated from prefix A, they can be merged togethi.
2.2(d) shows the merged results. After “prefix nesrgcheme,
we can apply the binary search to look for the &stgprefix
search. Detailed search procedure for merged pagfay can
be found in [3]. Notice that, when the search readhe final
two prefixes, both prefix need to be matched agdhesinput
IP. The longest prefix of the two is matched firkt.the
longest prefix matches the input IP, then it iseldBtherwise,
the other prefix is matched against the input tRs possible
that both prefixes do not match the input IP.
Multi-Dimensional Packet Classification

Our goal is to construct a standard five-dimendiona
classifier including IP source address and destinaddress
fields, transport protocol fields, and source armdtithation
port fields. The IP source address and destinatiddress
fields are in prefix format, which can apply binapyefix
search directly. The source port and destinatiort pelds
may form in range format. The ranges are conveit¢d
prefix format using the technique described in [18]

Now we illustrate how the binary prefix search dan
applied to the multi-dimensional packet -classifimat
Assuming a d-dimensional rule is in a formrzf(F1i,...Fdi),
where Fik, called the Kfilter, is a variable length prefix bit
string. We use r = (F1, ... Fd) when no confusiomaurred.
The proposed d-dimensional classification algorithis
described as follows.

1. Build the binary based on F1 of the rule table.

2. Push all the sub-rules (F2, ... Fd) of enclosing sdde
their descendant nodes of the F1 binary trie. Wk ca
this operation theule pushingstep.

. Perform the enclosure split process based on F1 to
construct the sequential list of sorted nodes. agh
node contains multiple entries of sub-rules (F2Fd).
Continue steps 1, 2, and 3 for each dimension éxcep
that the rule push step (step 2) is not requiredast
dimension.

Consider the 2D rule table consisting of A=(*,01%),
B=(000%,000%*), C=(001**), and D=(0*111*). We fitsduild

the binary trie according to the field 1 of clamsifshown in
Fig. 2.3(a). Secondly, the rules of enclosing pefi are
duplicated and pushed to their descendant prefiseshown

in Fig. 2.3(b). And then the enclosure split preces
performed on the field 1 binary trie with rule diggtions.



This example does not introduce any auxiliary notiesv the
sequential list of the rules based on filed 1 impleted.

Each element of the sequential list constructedaso
contains the field 2 rule information. We need ¢mstruct the
binary tries for all the nodes based on filed 29.R.3(c)
shows the binary tries constructed. Since this tast
dimension, no rule pushing is required. We thenfoper
enclosure split process to add the necessary anyitirefixes
of field 2. Fig. 2.3(d) shows the 2-D view of thgusture,
which is implemented, in a 2-level hierarchy shomnFig.
2.3(e).

Assume the first two fields of the incoming packee
(0000, 0000) and the rule set is the one descrilbede. The
first-level list in Fig. 2.3(e) is first checked thifield 1 that is
0000. Binary search finds that the longest prefatah is B.
Then following the pointer from B, binary searctp&rformed
using field 2 that is 0000. Field 2 of B is match&terefore,
the matched rule is B.

So far, we have described how to apply binary grefi
search to multidimensional classifier and give aaneple of
2D classifier. In our works, we implement a 5-dirsienal
classifier for IXP1200 by constructing five sorfegkfix array.
The hierarchical sorted prefixes are in the ordeprotocol,
destination address, source address, destinatiot)y pod
source port. In the first 4 levels of the hierardisys, we only
need longest prefix match, without considering phierities
of the rules. Only at the least level, we need é&tednine
which rule’s priority is the highest.

Performance Evaluation

In order to evaluate the performance and scalgahlit
our scheme, we use synthetic rule tables of variimes.
These synthetic tables are generated by using BXas$,
which is a publicly available tool for benchmarkipgcket
classification algorithms [20]. Table 2.2 shows themory
requirements of the proposed 5-dimensional scheme.
addition, we also implement 2-D version of GridTafe [18]
to compare with 5-D version of the proposed scheAlk.
experiments are evaluated by using IXP NetBenctraffic
generator/analyzer developed by our lab.

Table 2.2 Memory required by proposed scheme wit
synthetic rule tables.

Table | size Memory Requirement

Name Proposed 5D classifigrGOT 2D classifie
50 rule |50 2.96KB 20.99KB
100 rule |100 |4.79KB 31.57KB
500 _rule |500 |22.22KB 92.46KB
1000 _rule1000 |43.29KB 189.88KB
Grid-of-Tries

Memory requirement is the critical issue for

implementing a classification algorithm on the fdan of
IXP1200 because of the limited SRAM size (only 4NB
available in our evaluation board). We surveyedessav
packet classification algorithms in [4]. By considg the
requirement in both memory and performance, wekthire
Grid-of-Tries may be suitable in IXP1200 becausavibids
backtracking problem of the hierarchical tries [28H reduces
the storage requirement of the set purring tri&$. [Lherefore,
we implemented 2-D version of Grid-of-Tries and laased
its performance. Note that we set a simple 2D wersif rule
table for testing the Grid-of-Tries in this partdanse IXP
NetBench for generating traffic streams with diéfier size of
packets. Fig. 2.4 shows the experimental resultzar be seen
that IXP Router cannot perform very well with sma#icket
sizes. We doubt that the bottlenecks of our sysbenur in
receiving process. However, in hardware mode, weady
get the router’s throughputs by IXP NetBench. Bat i
simulation mode, the Developer Workbench can pmvid

detailed processing information such as memory thnelad
histories, memory reference latencies and cycleymje
interactions among the threads and memory unitds Th
information is very useful for analyzing our systerherefore,
we decide to execute IXP Router in simulation maohel
divide the tasks of Receive microengine into fisegories
for determining which one needs maximum processimg
and is the bottleneck. These five categories ameiRe Packet,
Classifier (2D Grid-of-Tries), IP Lookups (multibities of 4-
bit stride), Miscellaneous, and Queuing .

The queuing category has two types of actions: iggeu
packet for slow-path processing (StrongARM) or dogu
packet for fast-path processing (microengines). The
miscellaneous category consists of Layer 2 Headdidation,
Layer 3 Header Validation and TTL validation. Thaye
described as follows.

1. Layer 2 Header Validation: Ensure the destinatioAGV
address of the datagram matches the destination MAC
address of the interface where the datagram isveste
(RFC1812, Section 5.3.4). If a mismatch occursckhbe
Ethernet type, if it equals 806 (ARP request) aril L
destination MAC address is broadcast, this packet i
queued for slow-patch exception handling (StrongARM
exception handling). Otherwise, drop this packet.

Layer 3 Header Validation: Checking the packetisgté

is reasonable and that the IP version, headerHepgtket
length, and checksum fields are valid. Checking IP
source/destination address is legal unicast address

TTL Validation: If the TTL value is smaller than enthis
packet is queued for slow-patch exception handling.
Otherwise, it decrements the TTL and recalculates t
checksum.

Now, we can gather the required processing tineaoh
category by analyzing the thread execution histasyng
Developer Workbench. The simulated results are showvFig.
2.5. Only the task of receiving packet will be ihced
significantly with bigger packet size. Not surpnigly, the
Classifier is the heavy task of Receive microengiBach
search almost requires 3500 clock cycles that tgker0%
fprocessing time for a 64-byte packet. Therefore, hacket
classification algorithm, Grid-of-Tires, can notrfmem well
in IXP1200. Although Grid-of-Tries bounds memoryags to
O(NW) but the search time is O(dW), where N is iuenber
of filters and W is the maximum number of bits sfied in
the source or destination fields. For the casgseafching on
IPv4 source and destination address prefixes, it need 65
memory accesses in the worst case. In this envieohnwe
set prefix length “30” in the rule table, whichviery closely to
the worst case. In [20], David E. Taylor and Joaatls.
Turner performed a battery of analyses on 12 ndel tables
provided by Internet Service Providers (ISPs). Wnioately,
we find that the proportion of maximum address igrkfngth
(32) takes up higher percentage in real rule tdbkhould be
concluded, fromwhat has been said above, that trie based
packet classification algorithms are not suitalldXP1200.
Therefore, we didn’'t spend more time on implemantihe
EGT (5D-D version of Grid-of-Tries), which may remgs 84
to 137 memory accesses per lookup reported ag.in [2
Scalability Test

To conduct the scalability test, we set microendires
Receive microengine and microengine 4 as Transmit
microengine for processing packets. One inputitraffream
is generated by IXP NetBench with different sizepatkets
for analyzing the throughput based on differene rtdbles.
Note that the packet pattern of traffic stream mbst
predefined basedon the synthetic rule tables and the
forwarding table. This test is to investigate tlwalability of
our proposed scheme. Fig. 2.6 shows the experinesalts.
We can findthat the throughputs of our system are very



closely with different size of rule tables. Obsdaya our
proposed scheme has high scalability. One reastmitsour
proposed scheme is
increasing the number of rules in rule table, thecessing
time won't be linearly increased but logarithmigaficreased.
The other reason is that most rules are indepengi¢imteach
other; the enclosing rules are not very populaha&common
case. Specifically, our proposed scheme for 508srathieves
throughput of 38.9 Mbps at minimal size of packetkich is
much better than the result reported in [18].
Multi-Threads Test

As described in section 3, the design of our systkas
advantage of multi-treads architecture of IXP12@®&ach
thread of receive microengine services specifict pdrour

logarithmic search method. When

1. When a packet arrives, the packet header informatio
(Flow-ID) is used to generate cache index via halsith
will be decreased later. With this cache index,cam get
the number of cache block and the meta informatibn
cache block.

2. As long as the incoming Flow-ID can match one cache
entry in the cache block (cache hit), no furthearskes
are needed; that is, this cache entry gives udatyer-3
and layer-4 forwarding information: Classifier Aai ID
(result from packet classification procedure) andxiN
Hop Information Pointer result from I[P lookups
procedure).

If the incoming Flow-ID mismatches all cache erstiiie
this cache block (cache miss), this packet willftnevarded

system. Above test involves only one traffic streamby running packet classification and IP lookupscedure.

transmitted by one port of IXP NetBench. In thisikiof

situation, only one thread of Receive microengind te

waked up to service this traffic stream. To wakethg other
threads of Receive microengine and evaluate theinam

throughput of our system, we configure severafitratreams
(1~4) by IXP NetBench and transmit them to diffeérparts of
router. Fig. 2.7 shows the experimental resultduiddly, the
throughout of two threads is approximately two tmaf the
one of a single thread. However, due to the lackthef
computing power, the throughout of three or foue#ds in a
microengine is not three or four times of the perfance by
only one thread.

Multi-microengine Test

Besides, the mismatched cache block also needs tpdated.
Hit Ratio Analysis

The simplest way to evaluate cache performance is t
analyze the cache hit ratio. Since backbone routees
considered as the most critical points, we obtaiaelaffic
trace from OC-48 backbone routers provided by th&NR
PMA project [13]. This traffic trace has 42,870,8ditries,
including layer-3 and layer-4 information (sourceé/dort,
destination IP/port and protocol), which are useful our
investigation.

Several components may affect cache performande suc

as cache size, hash functions, cache associatiabd
replacement policies. We will consider whether ¢hes

For improving the performance of packets of smalleccomponents have major impact on cache hit ratios.

sizes, increasing the processing power is thegétifairward
method. Above test only uses one Receive microenfpn
dealing with the input packets. In this part, wafagure two
microengines (micorengine 0 and microengine 1) eseRe
microengines. In this way, one port can be serviegdwo
receive treads concurrently. Note that we must eciase
several mutex operations in our code for coordigathreads
with competitive problem. Figure 2.8 shows the eikpental
results. We can find that the throughout of two noémgines
approximately achieves to maximum transmit speedX&f
NetBench. Increasing the computing power can imprthe
performance of our system. However, it also inaeathe
used resources of IXP1200. For reducing the ussslirees of
IXP1200 and leaving ample headroom for additionatér
ports, we propose a layer-4 cache mechanism fol 28B in
next section.

3 Cache Design for IXP1200

Cache has been proved to be a very effective tgabni
to improve memory access speed. Nowadays, on-@thec
memory is usually designed for general procesdeso (zalled
CPU cache). However, in IXP1200, the microenginesdt
have cache memory but they share three differemhong
interfaces: SRAM, SDRAM and Scratchpad. Our idedois
design a cache mechanism in IXP1200 for improviagkpt
classification and IP lookups. To select the appabg
memory interface for caching the layer-3 and
information, we measured the latencies for readirighg

different sizeof data based on different types of memories.

The SRAM read/write speed is faster than SDRAM e@q/
close to scratchboard memory and the size in IXPligbig
enough to hold layer routing tables and classificatrule
tables. Therefore , we selected SRAM as cache memor

Fig. 3.1 illustrates the functional blocks of owching
approach for IXP1200, which is similar to CPU cachkach
cache block consists of one or more cache entnkgh are
the basic unit for storing cache information inchgdFlow-ID
and searching results (from classification andoldklips). Our
cache approach consists of three major steps tthatescribed
as follow.

lager-

1. Cache Size:The cache size is equal to the product of the
number of cache entries and the cache entry sihe. T
cache entry is the basic unit for storing cacherimation
which is composed of two fields. Fieldow-ID is used to
store flow information such as source IP address {3),
destination IP address (dst_ip), source port (snt),petc.
The other field,Results used to record the results from
packet classification and IP lookups. These twddéie
influence the size of cache entry. If each flovidisntified
by 2-dimensional fields (src_ip,dst_ip), it onlyenks 8
bytes for storing Flow-ID. However, in our systeeach
flow is identified by 5-dimensional fields; eaclcba entry
needs 16 bytes for storing Flow-ID and informatioh
results. In general, the more cache entries ibénsystem,
the higher is the cache-hit ratio. However, we pahuse
the entire SRAM for caching because SRAM need léso
used for storing other data structures such astable for
packet classification and IP lookups. We propose to
reserve 128KB SRAM as our cache memory, which is
enough for storing 8192 cache entries.

2. Hash function: Remember that packet header information
is used to generate cache index via hash. Without a
effective hash function, a large number of collisianay
occur and degrade the cache performance. Traditiasé
functions, such as SHA-1, MD5, are popular becdsg
produce well-balanced output in which a singlechiange
in the input can change every bit of the outputvetjual
probability. However, in IXP1200, SHA-1 or MD5 hash
functions are not supported in hardware. Therefore,
designing a hash function with less computatioadbieve
approximate performance of MD5 or SHA-1 will be
helpful for our cache scheme. We propose two sirhpkh
algorithms, XOR based hash and ADD based hash,hwhic
are shown in Fig. 3.2.

3. Cache associativity:Increasing associativity is a widely

used technique in CPU cache to reduce the impact of

conflict misses and increase hit rate. However, Gaghe
approach is to put cache information in SRAM, gettor
updating cache information must issue memory refere
to SRAM. In IXP1200, it is necessary to use SRAM



transfer  registers  for = communicating
microengines and SRAM unit. Nevertheless, in teohs

betweenHowever, we face another problem: all packets geadrby

IXP NetBench will be cached, and the cache hipratill be

microengine, each thread only can access 8 SRAMImost 100%. For solving this problem and creadifterent

read/write transfer registers, which result in thaximum

testing cases, we implement a software counter whilt

transfer size to be 32-byte (8*4-byte) in one memor invalidate the cache block periodically. With tleigunter, we

access. For this reason, we consider that direppathor
2-way set associative cache is suitable for ourhe&ac
approach because only one SRAM read or write isleete
for getting information frontache or updating information
to cache.

Cache Replacement Algorithm:From Fig. 3.1, the cache
index is the pointer used to get the number of edsbck.

If we adopt n-way set associative cache schemei¢aiyp,

n = 2, 4, 8 etc.), each cache block has n cacheéesnt
Once a cache miss occurs, it is necessary to choose

can create different cache hit ratio in our system.

The experimental environment is the same as Figudre
we adopt our proposed classification algorithm,ngsthe
rule_1000 as our classifier. IXP NetBench generttesnput
traffic with minimum size of packets in this expegnt. We
find that the performance of these three cache nseke
described above is almost the same. Therefore,nlyeshow
the results of two-way FIFO cache scheme in Fi@. 3.
Observably, with the two-way FIFO cache mechanisonr,
system performance can be improved significantlythe case

cache entry and replace it with the new one. Wedyapp of 87.5% hat ratio, our system can achieve the N&iBench

threeconventional replacement algorithms (first in fiostt

transmit speed (71.34Mbps), which has 50% improvenre

(FIFO), Least-Recently-Used (LRU), and random) to 2 throughput over the system with no cache (35.53Mbps

way set associative cache scheme for evaluatingrpact
on cache hit ratio in our system.

Trace Simulation

CONCLUSIONS
In this paper, we first explained the needs of oekw
processors for today’s complex applications, artdoéuced

4

So far, we have described our cache structure anghe hardware architecture and development enviratrire

several factors that may influence cache hit ralio.this

subsection, we use the collected traffic trace rgauti to

analyze cache hit ratio based on these factorsi®thee space
limit, only results for XOR are illustrated in t&b8.1.

First, consider the performance of hash functidrse
ADD based hash is better than XOR based hash wheilmec
entries are larger than 512. On the contrary, tRERXbased
hash is better than ADD based hash function withllscache
entries. In summary, the performance of simple fiasbtions
is almost equal to that of MD5 hash across all dats.

IXP1200. Then we explain the software architectarel
detailed pack flow in our system. At first, we ireplent the
Grid-of-Tries as our classification algorithm. Howee, its
heavy memory accesses almost take the 70% progessie
when dealing with minimum size of packet. To incedhe
performance, we designed and implemented a new 5-
dimensional packet classifier. Our classificatiolgoathm
needs less memory space than Grid-of-Tries and snitke
possible to put in fast SRAM. In addition, the lagamic
search method of our proposed algorithm is veriabilé and

Secondly, we focus on the impacts of cache-hibrati scalable for packet classification because thec&prule

with different cache associativity. Not surprisipglhe 2-way
set associative cache is better than direct magpete by
2.5% to 5.6%. But the differences are not so sicgnift; we
cannot ensure the performance of 2-way set ass@ciedche
is better than direct map. This is because 2-wagssociative
cache has two cache entries, which needs more clgaks
for getting/updating information from/to cache megnoln
addition, it also needs double time for comparirte t
information of cache entry.

Finally, we consider different replacement policts
FIFO is better than random in most of situations.té LRU,
it is better than FIFO and random by 0.4% to 3.Fiwever,
implementation of LRU algorithm is more complexntaFO,
this is because LRU needs to record the cache wtigh is
least used and updates this information to cachether word,
LRU needs to update the information (issue a SRAfiie)vto
cache whether the cache hit or not, but FIFO omgds to
update that for a cache miss.

Table 3.1: cache-hit ratio based on XOR hash fonctiith
different cache-size and replacement algorithms.

(Ezﬁtcrr;//eSiz o |Direct map |2-way FIFO é':;%yo m  |2way LRU

64/1KB 0.431586 0.464565 0.454718 0.481495
128/2KB 0.503763 0.536422 0.526164 0.55388

256/4KB 0.56481 0.593504 0.585397 0.615631
512/8KB 0.622608 0.642971 0.63848 0.672233
1024/16KB [0.682031 0.695614 0.694472 0.730671
2048/32KB |0.740807 0.751845 0.751835 0.786135
4096/64KB |0.796555 0.806116 0.805535 0.833534
8192/128KB0.840697 0.847871 0.846772 0.866453

Experiment Results on IXP1200 Enp-2505 board

tables are not very big in real world. In benchmagkour
proposed algorithm, our scheme for 1000 rules &ekie
throughput of 35.5 Mbps at minimal size of packetkich is
much better than the results reported in [12].

Furthermore, we proposed a cache mechanism for
IXP1200 because we observed that backbone routers h
strong temporal locality. Our proposed cache scheot@nly
caches the result from packet classification bst ahches the
result fromIP lookup. Only one SRAM-read is needed to
perform IP address Lookups and packet classifinatio
procedure when cache hits. With this cache mechmanise
throughput of our system is very close to the thtcal
maximum bandwidth with reasonable hit ratio.
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